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Cell types are fundamental functional units that can be traced across the tree of life. 
Rapid advances in single-cell technologies, coupled with the phylogenetic expansion 
in genome sequencing, present opportunities for the molecular characterization of 
cells across a broad range of organisms. Despite these developments, our understanding 
of eukaryotic cell diversity remains limited and we are far from decoding this diversity 
from genome sequences. Here we introduce the Biodiversity Cell Atlas initiative, which 
aims to create comprehensive single-cell molecular atlases across the eukaryotic tree 
of life. This community effort will be phylogenetically informed, rely on high-quality 
genomes and use shared standards to facilitate comparisons across species. The 
Biodiversity Cell Atlas aspires to deepen our understanding of the evolution and 
diversity of life at the cellular level, encompassing gene regulatory programs, 
differentiation trajectories, cell-type-specific molecular profiles and inter-organismal 
interactions.

Genome sequencing has transformed biology in the past three dec-
ades. The sequencing of the first eukaryotic genome, Saccharomyces 
cerevisiae1, in 1996 was soon followed by the first animal and plant 
genomes: the nematode Caenorhabditis elegans2 in 1998 and Arabidop-
sis thaliana3 in 2000, and with the Human Genome Project releasing 
a first draft in 2001 (ref. 4). In recent years, we have witnessed a rapid 
phylogenetic expansion of high-quality, chromosome-scale genome 
sequences, driven by the Earth BioGenome Project5,6. With more than 
10,000 eukaryotic species sequenced so far, the achievements of bio-
diversity genome sequencing have been extraordinary, transforming 
fields such as molecular and population genetics, evolutionary biology, 
biotechnology and medical research7. Moreover, biodiversity genom-
ics is key to decipher evolutionary relationships among organisms8, 
providing an indispensable phylogenetic framework for comparative 
biology9.

One of the most important applications of genome sequencing is 
to define and compare gene repertoires, transposable elements, con-
served non-coding sequences and chromosomal organization among 
species. However, genomes can also inspire a deeper understanding of 
biological function, acting as encoders of complex phenotypes driven 
by the collective activity of thousands of genes. Unlike the genetic 
code that defines proteins from DNA sequences, the codes underlying 
higher-order genomic function remain exceedingly difficult to deci-
pher10. This has led to an increasing divide between our knowledge of 

genomes across the tree of life and our limited understanding of how 
these genomes encode diverse biological functions11.

This gap in functional genomics also underlies a fundamental chal-
lenge in evolutionary biology12: connecting molecular evolution with 
phenotypic changes observed in subcellular structures, cell types, life 
cycles, morphologies and behaviours. The comprehensive scope of 
modern genomics, combined with centuries of detailed phenotypic 
observations, demands consolidation and synthesis. However, the 
complexity of the code linking genome sequence to functional traits 
at present impedes this synthesis. The Biodiversity Cell Atlas (BCA) 
initiative will attempt to bridge this gap by characterizing cellular diver-
sity across the tree of life through the lens of molecular cell atlases. 
To achieve this, the BCA aims to coordinate sampling priorities and 
fieldwork, standardize experimental and data analysis procedures, 
scale up single-cell data production across species and, when needed, 
drive technological development to support these efforts.

Decoding genomes through single cells
Cells are the native ‘decoders’ of genomes, robustly integrating devel-
opmental and environmental signals to functionally interpret genomic 
information. This dynamic and flexible process allows a single genome 
to give rise to many cellular functions by modulating the activity of all 
genes. Although genomes can theoretically attain an almost unlimited 

https://doi.org/10.1038/s41586-025-09312-4

Received: 13 November 2024

Accepted: 20 June 2025

Published online: 24 September 2025

 Check for updates

A list of affiliations appears at the end of the paper. *A list of authors and their affiliations appears at the end of the paper. ✉e-mail: arnau.sebe@crg.eu

https://doi.org/10.1038/s41586-025-09312-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-09312-4&domain=pdf
mailto:arnau.sebe@crg.eu


878  |  Nature  |  Vol 645  |  25 September 2025

Perspective

number of activity states—given that the number of possible states is at 
least exponential to the number of genes—natural selection and other 
evolutionary forces notably restrict this functional repertoire. The 
result is a rich, yet limited, set of genome-encoded cellular states in 
every species, which can be classified into cell types (Box 1). Function-
ally, these cell types underlie organized tissues and life cycles. Experi-
mentally, the bounded complexity of cellular states implies that it is 
possible to map them comprehensively and derive detailed cell atlases, 
defined here as systematic catalogues of molecular profiles from indi-
vidual cells within a biological system. Indeed, the advent of single-cell 
omics technologies has enabled the classification of cell types based on 
genome activity states within an organism (Fig. 1). These technologies 
can quantify thousands of transcripts in individual cells, either after dis-
sociation (single-cell RNA sequencing (scRNA-seq))13 or in their tissue 
context (spatial transcriptomics14); or profile chromatin accessibility at 
thousands of cis-regulatory elements (single-cell assay for transposase-
accessible chromatin with sequencing)15. When scaled to millions of cells 
and combined with computational methods for grouping single-cell 
profiles into cell states and types, single-cell genomics approaches 
facilitate the charting of cell atlases, as demonstrated by the Human 
Cell Atlas consortium16,17 and similar efforts in model organisms18–24.

By integrating biodiversity genome sequencing and single-cell omics, 
the BCA initiative aims to acquire molecular snapshots for millions of 
cells to infer thousands of genomic activity states across hundreds of 
species. Even before considering the effect these data will have on our 
understanding of eukaryotic functional diversity and evolution, the 
availability of such an unprecedented corpus of ‘decoded’ genomes 
will propel functional genomics into the artificial intelligence era. To 
understand why, one can revisit the factors contributing to solving 
the protein folding problem25. The adaptation of artificial intelligence 
technologies to biology relies on massive datasets that sample across 
phylogenetic diversity. In the case of protein structure, the curation of 
vast numbers of protein sequences from across the tree of life enabled 

the inference of covariation signals, which in turn could be used to pre-
dict the three-dimensional structure of the protein from its sequence26. 
These predictions were then refined by leveraging thousands of solved 
protein structures sampling a large fraction of known families of pro-
teins across the tree of life. The BCA aims to deliver a similar level of 
quality in measuring genomic molecular activities and cellular states 
across species representing eukaryotic phylodiversity. By doing this, 
the BCA data will empower new tools to link genomes with molecular 
states through computational models that could not be foreseen thus 
far. Ultimately, this has the potential to enable the in silico decoding of 
phenotypes from genomes and to reveal how genomic changes affect 
the evolution of cellular phenotypes.

Why map cell types across eukaryotes?
The systematic interrogation of cell type molecular phenotypes across 
the tree of life offers unique opportunities for impactful discoveries in 
many fields, including biotechnology and biomedicine applications, 
basic research and evolutionary theory, and environmental sciences 
(Fig. 2).

An important area of BCA applications will involve the development of 
new technologies based on the unprecedented characterization of new 
biomolecules and biological systems in understudied organisms. Cell 
atlases put genes in context: when and where a gene is expressed, and 
which genes are co-expressed together. This information will underpin 
new hypotheses about the functions of uncharacterized genes across 
biodiversity, potentially leading to industrial, agricultural or biomedical 
applications. These could include the discovery of proteolytic enzymes, 
various antimicrobial peptides, viral defence systems, genes involved 
in efficient metabolism and energy use (for example, C3 and C4 pho-
tosynthesis in plants27,28) and much more. In addition to this reservoir 
of evolutionary ‘biotechnological’ innovation that the BCA will help to 
uncover, the comprehensive functional annotation of genomes will 
provide a rich source of high-quality data for developing artificial intel-
ligence models in biology29–33, with applications that are only recently 
start to emerge such as the design of synthetic regulatory sequences 
and circuits34,35. Comparative cell atlases will also empower the infer-
ence of gene-to-gene functional dependencies by revealing conserved 
co-expression patterns across species. Using evolutionary diversifi-
cation as a perturbation experiment9, phylogenetic gene expression 
data can eventually be used to develop models that predict expression 
variation pathogenicity in humans, analogous to how protein sequence 
conservation is used to predict disease-associated protein variants36.

The BCA will have diverse effects on basic research. For example, 
cell atlases will uncover new biology in under-investigated species, 
becoming a powerful tool for generating hypotheses about the func-
tion of both genes and cells. Atlases will help to discover previously 
unknown cell types and gene modules, while providing information 
about the degree of cell type specificity and the pleiotropic usage of 
genes, enabling the efficient selection of cell type markers. In addi-
tion, a cell atlas facilitates unbiased phenotyping of experimental 
perturbations and environmental variation by means of projection 
of the re-sampled conditions to the reference atlas. Therefore, a refer-
ence atlas, much like a reference genome, becomes an indispensable 
resource for emerging model organisms. Single-cell atlases are also 
an essential first step towards a comparative molecular biology of 
cell types that will transform the study of cell type evolution. A deeper 
understanding of the evolutionary processes that define cell types can 
underpin more robust cell type classification schemes, on the basis of 
maximally informative molecular traits37. This phylogenetic taxonomy 
of cell types will be immediately useful for developing unified cell type 
nomenclatures, guiding cross-species comparative analyses, and refin-
ing the definition of what constitutes a cell type.

Finally, we anticipate that advances within the BCA initiative will 
enable the application of single-cell technologies to study and monitor 

Box 1

Cell types, cell states and gene 
modules
The morphological and molecular regularities observed in 
cells within and across organisms suggest the existence of 
cell types52,129–131: distinct entities with structural and functional 
properties that are reproducible across generations through 
embryonic development or throughout the life cycle. Cell types 
can be viewed as evolutionary units, traceable through phylogeny 
by the specific deployment of conserved genetic programs. 
Within a species, cells of the same type may show considerable 
variability—referred to as cell states—arising from developmental 
processes, environmental stimuli or disease conditions. Clustering 
of molecular profiles obtained by single-cell methods enable us to 
map the rich repertoire of cell states that comprise this variation. By 
broadly sampling across species, the BCA will contribute to refining 
the conceptual framework that describes how cell types originate 
from cell states and diversify through evolutionary processes. At 
an even finer level of granularity, we may define gene modules: 
groups of genes that work together to drive specific functions 
(for example, neurotransmission or digestive metabolism) or to 
form distinct cellular structures (for example, flagella, hyphae or 
extracellular matrix components). In contrast to the hierarchical 
definition of cell types and states, some of these modules operate 
combinatorially across different cell types, as seen with processes 
such as the cell cycle or innate immune responses.
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species in their natural environment. For example, single-cell meth-
ods can reveal the often-cryptic life cycles of microbial eukaryotes by 
dissecting the diversity and developmental dynamics of cell states 
in the wild. This is crucial for two related reasons: only a small frac-
tion of microbial eukaryotes can be cultured in the laboratory38, 
and cell type transitions in protists are often triggered by unknown 
environmental cues absent in laboratory culture conditions. Cell 
atlases can also uncover symbiotic interactions between organ-
isms in a high-throughput manner, identifying the constituents of 
holobiont assemblies and their molecular interactions with cellu-
lar resolution39,40. This has been demonstrated by single-cell stud-
ies of coral–dinoflagellate symbiosis41,42, of arbuscular mycorrhizal  
symbioses43 and of marine giant virus infection dynamics44,45. Beyond 
basic research, we predict further development of single-cell meth-
ods as powerful biomonitoring tools. Compared with environmental 
metagenome46–48 and metatranscriptome49 sequencing methods, 
single-cell approaches should allow researchers to determine which 
species are present in a sample while also interrogating organismal 
interactions, transcriptional dynamics and life-cycle stages (for exam-
ple, metabolic contributions, cell cycle, dormant cystic states). Overall, 
the capacity to characterize complex ecosystems at single-cell reso-
lution and monitor how they change over time and under different 
environmental stressors will help to inform conservation strategies and  
policymaking.

Both basic and translational research applications of the BCA rep-
resent vast opportunities. However, as the BCA is focused on charting 
unknown and new biology, it is also poised to bring about completely 
unexpected discoveries, driving new theories, ideas and interdisci-
plinary science.

Eukaryotic cellular diversity
Specialized cell types underlie cooperative functions in multicellu-
lar organisms and complex life cycles in microbial eukaryotes12,50–52.  
In animals, plants, fungi and multicellular algae, cells co-exist spatially 
and typically arise from successive cell divisions coupled with differ-
entiation from an initial, pluripotent single cell. In addition, aggrega-
tive multicellularity occurs throughout the eukaryotic tree of life51, 
as seen, for example, in the dictyostelid amoebozoans. Unicellular 
eukaryotes, or protists, show cells with intricate morphologies and 
unique physiological adaptations53 that are far from static; most have 
life cycles involving temporally differentiated cell types. For example, 
the discoban Naegleria gruberi transitions between amoeba, cystic 
and bi-flagellated cells54; choanoflagellates show transitions involving 
rosette colonies, solitary swimmers, thecate and amoeboid forms55–57; 
and many parasitic protists have intricated temporal adaptations to 
different hosts, tissues and symbiotic partners58.

Scientists have morphologically characterized cells across organ-
isms since the invention of early microscopes. This led to the identi-
fication and classification of protist species59,60 and the description 
of diverse cell types, including neurons61,62 and other specialized 
cells63. Cell types were first recognized morphologically by size, 
shape, organelle content, and structure and tissue context (Box 1). 
These cellular phenotypes can be conserved across vast evolution-
ary distances. For instance, neurons, sensory cells, muscle fibres and 
epidermal cells are morphologically recognizable in distant animal 
phyla64 and these observations inspired the idea of ‘cell families’ and 
the possibility of studying cell type evolution through comparative  
cytology65.

Single-cell transcriptomics

Cell type molecular profiles

Cell type trees

No expression

Brown algae

Upright cell Basal cell Spore

Naegleria amoeba

Cystic cell Amoeba

Low expression High expression

mRNA

Gene expression level

Gland cell Neuron Muscle cell Cnidocyte

Fig. 1 | The BCA aims at molecularly characterizing cell types across the 
eukaryotic tree of life. Molecular profiles derived from single-cell 
transcriptomics (or other data modalities such as chromatin accessibility) 

capture the gene expression patterns of individual cells. By clustering similar 
cells, cell types and states can be identified and organized into hierarchies that 
reflect their molecular similarities. mRNA, messenger RNA.



880  |  Nature  |  Vol 645  |  25 September 2025

Perspective

The advent of histochemical and molecular profiling tools further 
extended the taxonomic profiling of cell types across species66–68. These 
tools include detecting specific proteins using antibody-based immu-
nostaining69 and specific transcripts using RNA in situ hybridization 
for marker genes. Molecular characterization then extended to bulk 
transcriptomics and epigenomics profiling for isolated or enriched 
cell types70–72. However, it was only with the advent of single-cell 
omics methods that the systematic molecular characterization of cell 
types within and across organisms became feasible. Whole-organism 
single-cell expression profiles can be organized into cell type hierar-
chies and, in some cases, differentiation trajectories, thus creating a 
cell atlas for the organism.

The full potential of single-cell approaches for discovering unex-
pected biology and understanding cellular diversity will only be realized 
with a substantial increase in the taxonomic sampling of cell atlases73 
(Fig. 3). The first organism-wide cell atlases across the tree of life dem-
onstrate the power of single-cell analysis to uncover new biology in 
understudied species42,74–86, in a way comparable to the discoveries 
enabled by genome sequencing. Cell atlases provide a data-driven, 
operational definition for cell types and states (Box 1) and create com-
prehensive molecular catalogues expected and new cell types. Cell 
atlases facilitate further validation and visualization of cell types using 
atlas-derived markers (for example, cell-type-specific transcripts and/
or proteins) and enable the formulation of hypotheses about functional 
states and roles on the basis of expressed gene repertoires. Further-
more, atlas-defined cell states and types, especially when analysed 
jointly with the genome sequence, can reveal gene–gene regulatory 
relationships and putative functional gene programs87, supporting 
comparative analysis between types and species at multiple levels37.

Cell atlases in evolutionary studies
Cell atlases are poised to be central to our understanding of organismal 
biology and evolution52,73. Historically, the phenotypic similarities 
observed between cells within and across organisms suggested the 

existence of conserved cell types and inspired the first hierarchical 
cell type taxonomies64,65. Within organisms, the hierarchical nature 
of cell types derives from shared ontogenetic trajectories88 as well as 
from functional similarities and shared effector gene expression in 
differentiated cells87. However, quantifying cell type similarities (and 
dissimilarities) across organisms has been traditionally challenging 
due to the lack of adequate cell-type-defining traits that can be sys-
tematically measured and compared. For example, comparing ultra-
structural features or biochemical compositions of cell types across 
distantly related species is not straightforward and is limited to a low 
number of traits. Cell atlases provide quantitative traits to compare 
cell types and study cell type evolution, revealing the genetic basis 
of cellular identity through thousands of molecular measurements. 
For example, similarities between cell types in different organisms 
can be defined by comparing the expression of orthologous genes73,89 
or the cis-regulatory sequences that control cell-type-specific gene 
expression90,91. These comparisons based on molecular traits can be 
used to build cross-species cell type hierarchies42,74,77,92,93 and formulate 
hypotheses about cell type evolution94.

However, whereas cell type hierarchies can be derived from molecu-
lar data, such inference is not based on explicit evolutionary mod-
els37,73,95. This is because we lack reliable estimates for the divergence 
rates and the evolutionary regimes (drift, selection) of both lower-level 
traits (gene expression, cis-regulatory codes, coregulated gene pro-
grams) and the broader molecular phenotype (specialized cell types). 
Consequently, it remains difficult to assess cell type homology, dif-
ferentiate convergent similarities in non-homologous cell types and 
identify rapidly diverging homologous cell types. To address these 
challenges, we need to systematically measure comparable cellular 
traits in densely sampled phylogenetic trees, along a gradient of 
divergence times. The BCA will collect and curate such comprehen-
sive datasets, offering a unique opportunity for studying cell type 
evolutionary relationships, developing new theoretical models and 
linking genome-level evolutionary processes to phenotypic changes. 
These standardized datasets will empower the study of cell type origins, 

BCA

Gene–gene
dependencies

Symbiosis

Biotechnology
and biomedicine

Cell type 
evolution

Life cyclesBiomonitoring

Emerging
model speciesof cell types 

Synthetic 
biology

Genome 
regulation

Fig. 2 | BCA anticipated impacts. Systematic single-cell atlasing across species 
have the potential of transformative discoveries in biotechnology, biomedicine, 
evolutionary biology and environmental science. By contextualizing gene 
expression across cell types and organisms, cell atlases can uncover new 

biology, support functional genome annotation, inform artificial intelligence 
models and facilitate biomonitoring of ecosystems, while opening doors to 
unexpected, interdisciplinary breakthroughs.
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novelties and the evolution of functional gene programs and cellular 
differentiation trajectories. The relevance to numerous long-standing 
evolutionary questions will be immediate: for example, it may become 
possible to address the origin of neurons96,97 from several perspec-
tives, including functional gene modules, neurogenesis programs and 
cell identity cis-regulatory codes. Ultimately, the BCA will allow us to 
connect emerging cell types and states to genome sequence evolu-
tion, linking the continuity of cellular phenotypes to the historical 
continuity of genetic information98.

BCA goals and strategies
The BCA initiative is a coordinated international effort aimed at molecu-
larly characterizing cell types across the eukaryotic tree of life (Fig. 3).  
The BCA initiative was launched at a meeting in 2023 that brought 

together leading experts in biodiversity genomics, existing cell atlas 
initiatives and comparative single-cell genomics. During this and sub-
sequent meetings, the challenges and opportunities were discussed, 
and this Perspective sets out to share these. Working groups have 
been established to focus on three key areas: taxonomic prioritiza-
tion, single-cell technologies, and data analysis and integration (www.
biodiversitycellatlas.org has more information on how to participate). 
The initial BCA phase 0 (2024–2026) focuses on developing experi-
mental workflows and computational resources essential to scale up 
data production in phase 1 (2026 and beyond).

A first goal of the BCA is to establish species sampling criteria and 
to coordinate taxonomic coverage among initiative members. A pri-
mary criterion is to maximize phylogenetic diversity by prioritizing 
unsampled lineages across the tree of life. A practical approach to this 
is focusing on species with high-quality genomes either available or 
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being sequenced under the Earth BioGenome Project5 and associated 
projects. A second criterion is to study organisms at key phylogenetic 
positions to gain insights into major transitions in cellular complexity, 
such as independent origins of multicellularity (for example, brown 
algae, plants, animals, fungi), bursts in cell type diversity (for example, 
neurons in bilaterian nervous systems, new germ layers) and com-
plex unicellular life cycles and symbiotic interactions. The BCA will 
also prioritize the creation of high-quality cell atlases as foundational 
resources to support emerging model species. In addition, we will 
undertake deep taxonomic samplings through pilot projects aimed 
at extensive phylogenetic analysis to develop quantitative models 
for understanding cell type molecular evolution. Finally, the BCA will 
target organisms that pose considerable experimental challenges 
(for example, species with unknown cell wall compositions, exoskel-
etons, low cell numbers or hard tissues) to foster technological devel-
opments that can eventually enhance single-cell sampling in other 
difficult-to-study species.

A second goal of the BCA is to consolidate technologies and stand-
ardize procedures to scale up production of cell atlases. As part of 
BCA phase 0, benchmarking studies are underway to develop a BCA 
methods decision tree. This resource will offer guidance and detailed 
protocols for sampling, preserving, dissociating and sequencing new 
species. These studies will also identify experimental bottlenecks, 
highlighting the need for future technology developments. Initially, 
BCA efforts will focus on producing scRNA-seq atlases, with the goal 
of progressively incorporating other technologies, such as single-
cell assay for transposase-accessible chromatin with sequencing, as 
they become scalable to a broader range of species. In addition, we 
contemplate the extension of single-cell atlases (which do not provide 
spatial context) into spatial maps of cell types within tissues, organs and 
entire organisms using spatial transcriptomics and high-throughput 
imaging techniques99,100.

Finally, the BCA will develop new data infrastructure to analyse, 
model and compare cell atlases, as well as to efficiently disseminate 
the generated data and knowledge. Best practices in data analysis, 
quality control metrics and data standards will be established by the 
BCA working groups, along with standardized cell type annotations 
and classifications for any eukaryotic species. To achieve these goals, 
phase 0 of the BCA involves building unified single-cell data process-
ing pipelines using Nextflow101, designed to work across species and 
platforms. Furthermore, a dedicated database and portal are under 
development to enable flexible access and multi-level exploration of 
BCA datasets across species.

The challenges faced by the BCA are complex and will require inter-
disciplinary collaboration, new experimental and computational meth-
odologies, and coordinated fieldwork. Thus, a primary objective of 
the BCA initiative is to establish a platform that bridges single-cell 
genomics with biodiversity expertise, creating a forum to exchange 
and discuss practical information and first-hand experiences on 
these critical aspects. Recognizing that invaluable genetic resources— 
species for which the atlases will be developed—are often found in low 
and middle income countries, the BCA is committed to adhering to the 
benefit-sharing principles outlined in the Nagoya Protocol and will 
involve local communities throughout the cell atlas creation process, 
from sample collection to data analysis. This global community will 
facilitate the efficient and rapid expansion of single-cell atlases across 
the eukaryotic tree of life.

BCA technical challenges
Several technical challenges contribute to explain the at-present lim-
ited phylogenetic representation of single-cell atlases across eukary-
otes (Fig. 3). The BCA initiative must tackle these constraints to scale 
time-consuming species-specific optimizations and drive rapid expan-
sion of cell atlases.

BCA experimental challenges
One of the primary challenges in single-cell methods is the extraction 
of single cells or nuclei from intact organisms. Methods and conditions 
can vary between species and can severely affect the quality of the 
single-cell data at several levels, such as inducing transcriptional stress 
responses102, biasing against fragile cell types and causing the release of 
RNA and RNases into the sample. The most common cell dissociation 
strategy involves enzymatic digestion of fresh tissue. After digestion, 
cell death is evaluated using cell vitality staining, and samples with 
more than 5–10% of dead cells are generally discarded. In addition, large 
clumps of undissociated cells are filtered out before capture, although 
this step may not eliminate small clusters of non-dissociated cells. 
An extra consideration for marine organisms is osmotic stress. High 
salt concentrations can inhibit scRNA-seq reactions, such as reverse 
transcription, and alternative osmotic agents such as mannitol103 or 
sorbitol77 have been successfully used as substitutes.

There are two main alternatives to dissociating fresh tissues: fixation 
strategies and nuclei extraction. Whole-organism or tissue fixation 
prevents stress responses induced by digestion, osmotic stress and 
other dissociation-related artefacts. Three main types of fixation have 
been successfully used in scRNA-seq: methanol-based methods (for 
example, pure methanol78,104,105 or methanol mixed with acetic acid and 
glycerol106); crosslinker-based methods using agents such as formal-
dehyde107, glyoxal108 and dithiobis-succinimidyl propionate (DSP)109; 
and methods using deep eutectic solvents110. After fixation, cells are 
dissociated mechanically using sonication110, digestive enzymes109 or 
a combination of the two. An extra advantage of these methods is that 
fixed cells can be sorting using fluorescence-activated cell sorting106 
to remove multiplets and ambient RNA. Alternatively, nuclei can be 
extracted from fresh or flash-frozen tissues111. Single-nucleus RNA-seq 
is often used for challenging tissues such as the brain112 and muscle 
fibres113, and it is the most feasible option for multicellular organisms 
with cell walls, such as plants18, brown and red algae, and fungi. How-
ever, a potential drawback of single-nucleus RNA-seq is its reduced 
sensitivity, as the nucleus contains only a fraction of the cellular mes-
senger RNAs and a possibility is to combine single-nucleus RNA-seq 
for breadth and scRNA-seq for depth114.

Another important consideration is the efficiency of cell lysis. 
Whereas mild detergents and hypoosmotic conditions are sufficient 
to lyse animal cells, this is not the case for other eukaryotes with cell 
walls. Enzymes such as chitinases and glucanases in yeasts115 and cel-
lulases in plants116 can be used to digest cell walls. However, for many 
eukaryotes, the composition of their cell walls remains unknown and no 
enzymes are available to generate protoplasts. Two solutions to work 
with difficult-to-lyse cells are to isolate nuclei or to use plate-based 
methods42,45, in which sorted cells can be physically lysed using high 
temperature, freeze–thaw cycles or sonication. In addition, many 
single-cell methods require relatively large numbers of cells and have 
low cell recovery rates, which complicates the sampling of small speci-
mens. A potential solution is to mix genetically different specimens 
and deconvolve single-cell data by genotype117.

Whereas a universal protocol for single-cell experiments across all spe-
cies is unrealistic, a key goal of the BCA initiative is to define a methods 
decision tree to guide the main steps when sampling a new species. This 
will include recommendations on the advantages and disadvantages 
of each approach, specific experimental protocols for each strategy 
and suggested quality controls to evaluate outcomes (Supplemen-
tary Table 1). Applying a unified sampling framework to an increasing 
number of species will also help identify further constraints and guide 
technology-development efforts to overcome these challenges.

BCA computational challenges
The BCA initiative aims to standardize and streamline all aspects of 
single-cell data analysis, including unified pipelines, data formats 
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and data quality descriptors, to enable construction of comparable 
whole-organism atlases (Supplementary Table 1). A common chal-
lenge in single-cell data analysis and interpretation is the inaccuracy 
of gene annotations, such as missing or partial genes118,119. To address 
this issue, we will modify and extend existing gene annotations and 
complement short-read scRNA-seq data with long-read sequencing, 
working together with biodiversity genomics projects to improve exist-
ing genome annotations when needed. Beyond gene annotation, accu-
rate gene orthology inference120,121 will be another important aspect to 
enable cross-species cell atlas comparisons.

Another key problem is the use of standardized data quality and cov-
erage metrics for single-cell atlases. The BCA will work to establish and 
promote the use of metrics for atlas coverage and precision, analogous 
to those used in genome assembly and annotation. For instance, we will 
develop metrics to assess the saturation of atlases, helping to determine 
the target numbers of cells needed to ensure robust coverage of an 
organism’s diversity of cell types and states. We will also promote the 
development of algorithms for imputing missing cell types based on a 
species’ genomic sequence and complete atlases from related species.

The data representations developed by the BCA, as well as stand-
ards and software implementing them, will enable access to and flex-
ible manipulation of single-cell atlases across species. To this end, the 
BCA database will connect existing nomenclatures, such as species 
and gene names, with new higher-level objects such as cell types and 
states, co-expressed gene modules or co-accessible regulatory ele-
ments. We expect that coherent data generation and processing will 
strategically foster the development of new ideas and methods for 
comparative cell atlas analyses, including tools to compare cell type 
transcriptomes94,122,123, cross-species cell embeddings122,123, gene expres-
sion evolution models124–127 and new phylogenetic methods95. Even more 
ambitiously, models for gene regulatory networks, developmental tra-
jectories or modular cellular programs, initially defined for individual 
species, could be generalized in a comparative context and inform new 
evolutionary models. Standardized ontologies, quality and coverage 
metrics are essential to make substantial progress towards these goals.

Overall, adopting shared data processing and metadata standards 
will significantly enhance the reusability and meta-analysis of cell 
atlases, whether the aim is to infer the biology of a species of interest, 
characterize components and interactions within an ecosystem, or 
tackle the challenge of building a large language model that predicts 
function from DNA.

Towards a cell type tree of life
The BCA initiative represents the coalescence of biodiversity genomics 
and single-cell biology, with the ambition to generate cellular atlases 
at a large phylogenetic scale. We predict initial steps to be focused on 
optimizing experimental strategies, while simultaneously building 
the computational infrastructure to efficiently analyse and interpret 
variation in cell atlases within a phylogenetically informed framework. 
These initial experiences and design considerations, collectively shared 
and discussed within the BCA community, will pave the way for the 
efficient expansion of cell atlases to hundreds of species. Similarly, 
whereas we initially plan to focus on single-cell gene expression profil-
ing, the methodological expertise developed in this process will lay the 
groundwork for incorporating extra data modalities, such as single-cell 
resolved chromatin accessibility and spatial omics.

The BCA comparative perspective, rooted in phylogenetic methods 
and evolutionary concepts, will help us to systematically describe and 
interpret cell types, cell states and gene modules across organisms 
and timescales. This conceptual and practical foundation will have 
far-reaching effects beyond the creation of molecular catalogues of 
eukaryotic cell types. The BCA outcomes will provide transforma-
tive insights into genome function and evolution, gene regulation, 
organismal complexity, multicellular ontogeny, eukaryotic life cycles, 

symbiosis and other biological interactions both in natural and altered 
environmental conditions. The BCA will venture into unknown biology 
with tools that have never before been applied systematically to explore 
it at this scale, holding the potential for unexpected discoveries in one 
of the major frontiers of modern biology.
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