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Celltypes are fundamental functional units that can be traced across the tree of life.
Rapid advances in single-cell technologies, coupled with the phylogenetic expansion
ingenome sequencing, present opportunities for the molecular characterization of
cells across abroad range of organisms. Despite these developments, our understanding
of eukaryotic cell diversity remains limited and we are far from decoding this diversity
from genome sequences. Here we introduce the Biodiversity Cell Atlas initiative, which

aimsto create comprehensive single-cell molecular atlases across the eukaryotic tree
of life. This community effort will be phylogenetically informed, rely on high-quality
genomes and use shared standards to facilitate comparisons across species. The
Biodiversity Cell Atlas aspires to deepen our understanding of the evolution and
diversity of life at the cellular level, encompassing gene regulatory programs,
differentiation trajectories, cell-type-specific molecular profiles and inter-organismal

interactions.

Genome sequencing has transformed biology in the past three dec-
ades. The sequencing of the first eukaryotic genome, Saccharomyces
cerevisiae', in 1996 was soon followed by the first animal and plant
genomes: the nematode Caenorhabditis elegans®in 1998 and Arabidop-
sis thaliana® in 2000, and with the Human Genome Project releasing
afirst draftin 2001 (ref. 4). Inrecent years, we have witnessed a rapid
phylogenetic expansion of high-quality, chromosome-scale genome
sequences, driven by the Earth BioGenome Project®®, With more than
10,000 eukaryotic species sequenced so far, the achievements of bio-
diversity genome sequencing have been extraordinary, transforming
fields such as molecular and population genetics, evolutionary biology,
biotechnology and medical research’. Moreover, biodiversity genom-
ics is key to decipher evolutionary relationships among organisms?,
providing anindispensable phylogenetic framework for comparative
biology”’.

One of the most important applications of genome sequencing is
to defineand compare gene repertoires, transposable elements, con-
served non-coding sequences and chromosomal organization among
species. However, genomes canalsoinspire a deeper understanding of
biological function, acting as encoders of complex phenotypes driven
by the collective activity of thousands of genes. Unlike the genetic
codethat defines proteins from DNA sequences, the codes underlying
higher-order genomic function remain exceedingly difficult to deci-
pher'. This has led to an increasing divide between our knowledge of

genomes across the tree of life and our limited understanding of how
these genomes encode diverse biological functions™.

This gap in functional genomics also underlies afundamental chal-
lenge in evolutionary biology': connecting molecular evolution with
phenotypic changes observedinsubcellular structures, cell types, life
cycles, morphologies and behaviours. The comprehensive scope of
modern genomics, combined with centuries of detailed phenotypic
observations, demands consolidation and synthesis. However, the
complexity of the code linking genome sequence to functional traits
at present impedes this synthesis. The Biodiversity Cell Atlas (BCA)
initiative will attempt to bridge this gap by characterizing cellular diver-
sity across the tree of life through the lens of molecular cell atlases.
To achieve this, the BCA aims to coordinate sampling priorities and
fieldwork, standardize experimental and data analysis procedures,
scale up single-cell data production across species and, when needed,
drive technological development to support these efforts.

Decoding genomes through single cells

Cellsare the native ‘decoders’ of genomes, robustly integrating devel-
opmental and environmental signals to functionally interpret genomic
information. This dynamic and flexible process allows a single genome
to giverise to many cellular functions by modulating the activity of all
genes. Although genomes can theoretically attain analmost unlimited
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Box 1

Cell types, cell states and gene
modules

The morphological and molecular regularities observed in

cells within and across organisms suggest the existence of

cell types®>'*™': distinct entities with structural and functional
properties that are reproducible across generations through
embryonic development or throughout the life cycle. Cell types
can be viewed as evolutionary units, traceable through phylogeny
by the specific deployment of conserved genetic programs.
Within a species, cells of the same type may show considerable
variability—referred to as cell states—arising from developmental
processes, environmental stimuli or disease conditions. Clustering
of molecular profiles obtained by single-cell methods enable us to
map the rich repertoire of cell states that comprise this variation. By
broadly sampling across species, the BCA will contribute to refining
the conceptual framework that describes how cell types originate
from cell states and diversify through evolutionary processes. At
an even finer level of granularity, we may define gene modules:
groups of genes that work together to drive specific functions

(for example, neurotransmission or digestive metabolism) or to
form distinct cellular structures (for example, flagella, hyphae or
extracellular matrix components). In contrast to the hierarchical
definition of cell types and states, some of these modules operate
combinatorially across different cell types, as seen with processes
such as the cell cycle or innate immune responses.

number of activity states—given that the number of possible states is at
least exponential to the number of genes—natural selection and other
evolutionary forces notably restrict this functional repertoire. The
resultis arich, yet limited, set of genome-encoded cellular states in
every species, which can be classified into cell types (Box 1). Function-
ally, these cell types underlie organized tissues and life cycles. Experi-
mentally, the bounded complexity of cellular states implies that it is
possible to map them comprehensively and derive detailed cell atlases,
defined here as systematic catalogues of molecular profiles fromindi-
vidual cells within abiological system. Indeed, the advent of single-cell
omics technologies has enabled the classification of cell types based on
genome activity states withinan organism (Fig.1). These technologies
can quantify thousands of transcripts inindividual cells, either after dis-
sociation (single-cell RNA sequencing (scRNA-seq))™ or in their tissue
context (spatial transcriptomics™); or profile chromatin accessibility at
thousands of cis-regulatory elements (single-cell assay for transposase-
accessible chromatinwith sequencing)®. Whenscaled to millions of cells
and combined with computational methods for grouping single-cell
profiles into cell states and types, single-cell genomics approaches
facilitate the charting of cell atlases, as demonstrated by the Human
Cell Atlas consortium'" and similar efforts in model organisms' 2,
By integrating biodiversity genome sequencing and single-cell omics,
the BCAinitiative aims to acquire molecular snapshots for millions of
cells toinfer thousands of genomic activity states across hundreds of
species. Evenbefore considering the effect these datawill have on our
understanding of eukaryotic functional diversity and evolution, the
availability of such an unprecedented corpus of ‘decoded’ genomes
will propel functional genomics into the artificial intelligence era. To
understand why, one can revisit the factors contributing to solving
the protein folding problem®. The adaptation of artificial intelligence
technologies to biology relies on massive datasets that sample across
phylogenetic diversity. In the case of protein structure, the curation of
vast numbers of protein sequences from across the tree of life enabled
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theinference of covariation signals, which in turn could be used to pre-
dict the three-dimensional structure of the protein fromits sequence®.
These predictions were then refined by leveraging thousands of solved
protein structures sampling a large fraction of known families of pro-
teins across the tree of life. The BCA aims to deliver a similar level of
quality in measuring genomic molecular activities and cellular states
across species representing eukaryotic phylodiversity. By doing this,
the BCA data will empower new tools to link genomes with molecular
states through computational models that could not be foreseen thus
far. Ultimately, this has the potential to enable the in silico decoding of
phenotypes from genomes and to reveal how genomic changes affect
the evolution of cellular phenotypes.

Why map cell types across eukaryotes?

The systematicinterrogation of cell type molecular phenotypes across
thetree of life offers unique opportunities forimpactful discoveriesin
many fields, including biotechnology and biomedicine applications,
basic research and evolutionary theory, and environmental sciences
(Fig.2).

Animportantarea of BCA applications willinvolve the development of
new technologies based onthe unprecedented characterization of new
biomolecules and biological systemsin understudied organisms. Cell
atlases put genes in context: when and where a gene is expressed, and
which genes are co-expressed together. This information will underpin
new hypotheses about the functions of uncharacterized genes across
biodiversity, potentially leading toindustrial, agricultural or biomedical
applications. These couldinclude the discovery of proteolyticenzymes,
various antimicrobial peptides, viral defence systems, genesinvolved
in efficient metabolism and energy use (for example, C3 and C4 pho-
tosynthesis in plants*2%) and much more. In addition to this reservoir
of evolutionary ‘biotechnological’ innovation that the BCAwill help to
uncover, the comprehensive functional annotation of genomes will
providearich source of high-quality data for developing artificial intel-
ligence models in biology® >, with applications that are only recently
start to emerge such as the design of synthetic regulatory sequences
and circuits®***. Comparative cell atlases will also empower the infer-
ence of gene-to-gene functional dependencies by revealing conserved
co-expression patterns across species. Using evolutionary diversifi-
cation as a perturbation experiment’, phylogenetic gene expression
data can eventually be used to develop models that predict expression
variation pathogenicity in humans, analogous to how protein sequence
conservation is used to predict disease-associated protein variants™.

The BCA will have diverse effects on basic research. For example,
cell atlases will uncover new biology in under-investigated species,
becoming a powerful tool for generating hypotheses about the func-
tion of both genes and cells. Atlases will help to discover previously
unknown cell types and gene modules, while providing information
about the degree of cell type specificity and the pleiotropic usage of
genes, enabling the efficient selection of cell type markers. In addi-
tion, a cell atlas facilitates unbiased phenotyping of experimental
perturbations and environmental variation by means of projection
ofthe re-sampled conditions to the reference atlas. Therefore, arefer-
ence atlas, much like a reference genome, becomes an indispensable
resource for emerging model organisms. Single-cell atlases are also
an essential first step towards a comparative molecular biology of
celltypes that will transform the study of cell type evolution. A deeper
understanding of the evolutionary processes that define cell types can
underpin more robust cell type classification schemes, on the basis of
maximally informative molecular traits¥. This phylogenetic taxonomy
of celltypes will beimmediately useful for developing unified cell type
nomenclatures, guiding cross-species comparative analyses, and refin-
ing the definition of what constitutes a cell type.

Finally, we anticipate that advances within the BCA initiative will
enable the application of single-cell technologies to study and monitor
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Fig.1| The BCA aims at molecularly characterizing cell types across the
eukaryotic tree of life. Molecular profiles derived from single-cell
transcriptomics (or other datamodalities such as chromatin accessibility)

species in their natural environment. For example, single-cell meth-
ods canreveal the often-crypticlife cycles of microbial eukaryotes by
dissecting the diversity and developmental dynamics of cell states
in the wild. This is crucial for two related reasons: only a small frac-
tion of microbial eukaryotes can be cultured in the laboratory?,
and cell type transitions in protists are often triggered by unknown
environmental cues absent in laboratory culture conditions. Cell
atlases can also uncover symbiotic interactions between organ-
isms in a high-throughput manner, identifying the constituents of
holobiont assemblies and their molecular interactions with cellu-
lar resolution®**°. This has been demonstrated by single-cell stud-
ies of coral-dinoflagellate symbiosis**?, of arbuscular mycorrhizal
symbioses* and of marine giant virus infection dynamics***. Beyond
basic research, we predict further development of single-cell meth-
ods as powerful biomonitoring tools. Compared with environmental
metagenome***® and metatranscriptome* sequencing methods,
single-cell approaches should allow researchers to determine which
species are present in a sample while also interrogating organismal
interactions, transcriptional dynamics and life-cycle stages (for exam-
ple, metabolic contributions, cell cycle, dormant cystic states). Overall,
the capacity to characterize complex ecosystems at single-cell reso-
lution and monitor how they change over time and under different
environmental stressors will help toinform conservationstrategies and
policymaking.

Both basic and translational research applications of the BCA rep-
resent vast opportunities. However, as the BCA is focused on charting
unknown and new biology, itis also poised to bring about completely
unexpected discoveries, driving new theories, ideas and interdisci-
plinary science.

Biflagellate cell

capture the gene expression patterns of individual cells. By clustering similar
cells, celltypesand states can be identified and organized into hierarchies that
reflect their molecular similarities. mRNA, messenger RNA.

Eukaryotic cellular diversity

Specialized cell types underlie cooperative functions in multicellu-
lar organisms and complex life cycles in microbial eukaryotes'>*-%2,
Inanimals, plants, fungi and multicellular algae, cells co-exist spatially
and typically arise from successive cell divisions coupled with differ-
entiation from aninitial, pluripotent single cell. In addition, aggrega-
tive multicellularity occurs throughout the eukaryotic tree of life™,
as seen, for example, in the dictyostelid amoebozoans. Unicellular
eukaryotes, or protists, show cells with intricate morphologies and
unique physiological adaptations® that are far from static; most have
life cyclesinvolving temporally differentiated cell types. For example,
the discoban Naegleria gruberi transitions between amoeba, cystic
and bi-flagellated cells**; choanoflagellates show transitions involving
rosette colonies, solitary swimmers, thecate and amoeboid forms>™’;
and many parasitic protists have intricated temporal adaptations to
different hosts, tissues and symbiotic partners®,

Scientists have morphologically characterized cells across organ-
isms since the invention of early microscopes. This led to the identi-
fication and classification of protist species***° and the description
of diverse cell types, including neurons®? and other specialized
cells®®, Cell types were first recognized morphologically by size,
shape, organelle content, and structure and tissue context (Box 1).
These cellular phenotypes can be conserved across vast evolution-
ary distances. For instance, neurons, sensory cells, muscle fibres and
epidermal cells are morphologically recognizable in distant animal
phyla®* and these observations inspired the idea of ‘cell families’ and
the possibility of studying cell type evolution through comparative
cytology®.
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Fig.2|BCA anticipated impacts. Systematic single-cell atlasing across species
have the potential of transformative discoveriesin biotechnology, biomedicine,
evolutionary biology and environmental science. By contextualizing gene
expressionacross cell types and organisms, cell atlases can uncover new

The advent of histochemical and molecular profiling tools further
extended the taxonomic profiling of cell types across species®® %, These
toolsinclude detecting specific proteins using antibody-based immu-
nostaining® and specific transcripts using RNA in situ hybridization
for marker genes. Molecular characterization then extended to bulk
transcriptomics and epigenomics profiling for isolated or enriched
cell types’ 72, However, it was only with the advent of single-cell
omics methods that the systematic molecular characterization of cell
types within and across organisms became feasible. Whole-organism
single-cell expression profiles can be organized into cell type hierar-
chies and, in some cases, differentiation trajectories, thus creating a
cell atlas for the organism.

The full potential of single-cell approaches for discovering unex-
pectedbiology and understanding cellular diversity will only be realized
with a substantial increase in the taxonomic sampling of cell atlases™
(Fig.3). Thefirst organism-wide cell atlases across the tree of life dem-
onstrate the power of single-cell analysis to uncover new biology in
understudied species*>” %, in a way comparable to the discoveries
enabled by genome sequencing. Cell atlases provide a data-driven,
operational definition for cell types and states (Box 1) and create com-
prehensive molecular catalogues expected and new cell types. Cell
atlases facilitate further validation and visualization of cell types using
atlas-derived markers (for example, cell-type-specific transcripts and/
or proteins) and enable the formulation of hypotheses about functional
states and roles on the basis of expressed gene repertoires. Further-
more, atlas-defined cell states and types, especially when analysed
jointly with the genome sequence, can reveal gene-gene regulatory
relationships and putative functional gene programs®, supporting
comparative analysis between types and species at multiple levels®.

Cell atlases in evolutionary studies

Cell atlases are poised to be central to our understanding of organismal
biology and evolution®?”, Historically, the phenotypic similarities
observed between cells within and across organisms suggested the
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biology, support functional genome annotation, inform artificial intelligence
models and facilitate biomonitoring of ecosystems, while opening doors to
unexpected, interdisciplinary breakthroughs.

existence of conserved cell types and inspired the first hierarchical
cell type taxonomies®*5, Within organisms, the hierarchical nature
of cell types derives from shared ontogenetic trajectories®® as well as
from functional similarities and shared effector gene expression in
differentiated cells¥”. However, quantifying cell type similarities (and
dissimilarities) across organisms has been traditionally challenging
due to the lack of adequate cell-type-defining traits that can be sys-
tematically measured and compared. For example, comparing ultra-
structural features or biochemical compositions of cell types across
distantly related species is not straightforward and is limited to a low
number of traits. Cell atlases provide quantitative traits to compare
cell types and study cell type evolution, revealing the genetic basis
of cellular identity through thousands of molecular measurements.
For example, similarities between cell types in different organisms
canbe defined by comparing the expression of orthologous genes’>%
or the cis-regulatory sequences that control cell-type-specific gene
expression®*”, These comparisons based on molecular traits can be
used to build cross-species cell type hierarchies**”"”°>* and formulate
hypotheses about cell type evolution®.

However, whereas cell type hierarchies can be derived from molecu-
lar data, such inference is not based on explicit evolutionary mod-
els*”*% This is because we lack reliable estimates for the divergence
rates and the evolutionary regimes (drift, selection) of both lower-level
traits (gene expression, cis-regulatory codes, coregulated gene pro-
grams) and the broader molecular phenotype (specialized cell types).
Consequently, it remains difficult to assess cell type homology, dif-
ferentiate convergent similarities in non-homologous cell types and
identify rapidly diverging homologous cell types. To address these
challenges, we need to systematically measure comparable cellular
traits in densely sampled phylogenetic trees, along a gradient of
divergence times. The BCA will collect and curate such comprehen-
sive datasets, offering a unique opportunity for studying cell type
evolutionary relationships, developing new theoretical models and
linking genome-level evolutionary processes to phenotypic changes.
These standardized datasets willempower the study of cell type origins,
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Fig.3|Phylogeneticstate-of-the-art of single-cell atlases across eukaryotes.
For major eukaryotic (left) and animal (right) lineages, bar plotsindicate the
number of estimated species and sequenced genomes (based on GoaT'*®
(https://goat.genomehubs.org/)). The presence of single-cell datais marked

by blue circumferences and red circles denote the number of available whole-
organism cell atlases. Partial single-cell data (blue circumference only) refers to

novelties and the evolution of functional gene programs and cellular
differentiation trajectories. The relevance to numerous long-standing
evolutionary questions willbeimmediate: for example, it may become
possible to address the origin of neurons®*® from several perspec-
tives, including functional gene modules, neurogenesis programs and
cellidentity cis-regulatory codes. Ultimately, the BCA will allow us to
connect emerging cell types and states to genome sequence evolu-
tion, linking the continuity of cellular phenotypes to the historical
continuity of genetic information®,

BCA goals and strategies

The BCAinitiativeisacoordinated international effort aimed at molecu-
larly characterizing cell types across the eukaryotic tree of life (Fig. 3).
The BCA initiative was launched at a meeting in 2023 that brought
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datasets limited to specific tissues (for example, animal blood or brain, or plant
roots) or particular life stages (for example, in unicellular eukaryotes). For
animals, we distinguish the availability of whole-body atlases for embryonic
stages, postembryoniclarval stages (where applicable) and adults. CRuMs,
Collodictyonidae, Rigifilida and Mantamonadida supergroup; SAR,
Stramenopila, Alveolata, Rhizaria supergroup.

together leading experts in biodiversity genomics, existing cell atlas
initiatives and comparative single-cell genomics. During this and sub-
sequent meetings, the challenges and opportunities were discussed,
and this Perspective sets out to share these. Working groups have
been established to focus on three key areas: taxonomic prioritiza-
tion, single-cell technologies, and data analysis and integration (www.
biodiversitycellatlas.org has more information on how to participate).
The initial BCA phase 0 (2024-2026) focuses on developing experi-
mental workflows and computational resources essential to scale up
data productionin phase1(2026 and beyond).

Afirst goal of the BCA is to establish species sampling criteria and
to coordinate taxonomic coverage among initiative members. A pri-
mary criterion is to maximize phylogenetic diversity by prioritizing
unsampled lineages across the tree of life. A practical approach to this
is focusing on species with high-quality genomes either available or
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being sequenced under the Earth BioGenome Project® and associated
projects. Asecond criterionis to study organisms at key phylogenetic
positions to gaininsightsinto major transitions in cellular complexity,
such as independent origins of multicellularity (for example, brown
algae, plants, animals, fungi), burstsin cell type diversity (for example,
neurons in bilaterian nervous systems, new germ layers) and com-
plex unicellular life cycles and symbiotic interactions. The BCA will
also prioritize the creation of high-quality cell atlases as foundational
resources to support emerging model species. In addition, we will
undertake deep taxonomic samplings through pilot projects aimed
at extensive phylogenetic analysis to develop quantitative models
for understanding cell type molecular evolution. Finally, the BCA will
target organisms that pose considerable experimental challenges
(for example, species with unknown cell wall compositions, exoskel-
etons, low cellnumbers or hard tissues) to foster technological devel-
opments that can eventually enhance single-cell sampling in other
difficult-to-study species.

A second goal of the BCA is to consolidate technologies and stand-
ardize procedures to scale up production of cell atlases. As part of
BCA phase 0, benchmarking studies are underway to develop a BCA
methods decision tree. This resource will offer guidance and detailed
protocols for sampling, preserving, dissociating and sequencing new
species. These studies will also identify experimental bottlenecks,
highlighting the need for future technology developments. Initially,
BCA efforts will focus on producing scRNA-seq atlases, with the goal
of progressively incorporating other technologies, such as single-
cell assay for transposase-accessible chromatin with sequencing, as
they become scalable to a broader range of species. In addition, we
contemplate the extension of single-cell atlases (which do not provide
spatial context) into spatial maps of cell types withintissues, organs and
entire organisms using spatial transcriptomics and high-throughput
imaging techniques®°°,

Finally, the BCA will develop new data infrastructure to analyse,
model and compare cell atlases, as well as to efficiently disseminate
the generated data and knowledge. Best practices in data analysis,
quality control metrics and data standards will be established by the
BCA working groups, along with standardized cell type annotations
and classifications for any eukaryotic species. To achieve these goals,
phase O of the BCA involves building unified single-cell data process-
ing pipelines using Nextflow'”, designed to work across species and
platforms. Furthermore, a dedicated database and portal are under
development to enable flexible access and multi-level exploration of
BCA datasets across species.

The challenges faced by the BCA are complex and will require inter-
disciplinary collaboration, new experimental and computational meth-
odologies, and coordinated fieldwork. Thus, a primary objective of
the BCA initiative is to establish a platform that bridges single-cell
genomics with biodiversity expertise, creating a forum to exchange
and discuss practical information and first-hand experiences on
these critical aspects. Recognizing that invaluable genetic resources—
species for which the atlases will be developed—are often foundin low
and middleincome countries, the BCAis committed to adhering to the
benefit-sharing principles outlined in the Nagoya Protocol and will
involve local communities throughout the cell atlas creation process,
from sample collection to data analysis. This global community will
facilitate the efficient and rapid expansion of single-cell atlases across
the eukaryotic tree of life.

BCA technical challenges

Several technical challenges contribute to explain the at-present lim-
ited phylogenetic representation of single-cell atlases across eukary-
otes (Fig. 3). The BCA initiative must tackle these constraints to scale
time-consuming species-specific optimizations and drive rapid expan-
sion of cell atlases.
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BCA experimental challenges

One of the primary challenges in single-cell methodsis the extraction
of single cells or nuclei fromintact organisms. Methods and conditions
can vary between species and can severely affect the quality of the
single-cell data atseverallevels, suchas inducing transcriptional stress
responses'®, biasing against fragile cell types and causing the release of
RNA and RNases into the sample. The most common cell dissociation
strategy involves enzymatic digestion of fresh tissue. After digestion,
cell death is evaluated using cell vitality staining, and samples with
morethan5-10% of dead cells are generally discarded. Inaddition, large
clumps of undissociated cells arefiltered out before capture, although
this step may not eliminate small clusters of non-dissociated cells.
An extra consideration for marine organisms is osmotic stress. High
salt concentrations can inhibit scRNA-seq reactions, such as reverse
transcription, and alternative osmotic agents such as mannitol'® or
sorbitol”” have been successfully used as substitutes.

There are two main alternatives to dissociating fresh tissues: fixation
strategies and nuclei extraction. Whole-organism or tissue fixation
prevents stress responses induced by digestion, osmotic stress and
other dissociation-related artefacts. Three main types of fixation have
been successfully used in scRNA-seq: methanol-based methods (for
example, pure methanol’®'°*1% or methanol mixed with acetic acid and
glycerol'®); crosslinker-based methods using agents such as formal-
dehyde'?, glyoxal'®® and dithiobis-succinimidyl propionate (DSP)'%;
and methods using deep eutectic solvents™®. After fixation, cells are
dissociated mechanically using sonication'?, digestive enzymes'® or
acombination ofthe two. Anextraadvantage of these methodsisthat
fixed cells can be sorting using fluorescence-activated cell sorting'®®
to remove multiplets and ambient RNA. Alternatively, nuclei can be
extracted from fresh or flash-frozen tissues™. Single-nucleus RNA-seq
is often used for challenging tissues such as the brain> and muscle
fibres™, and it is the most feasible option for multicellular organisms
with cell walls, such as plants'®, brown and red algae, and fungi. How-
ever, a potential drawback of single-nucleus RNA-seq is its reduced
sensitivity, as the nucleus contains only a fraction of the cellular mes-
senger RNAs and a possibility is to combine single-nucleus RNA-seq
for breadth and scRNA-seq for depth™,

Another important consideration is the efficiency of cell lysis.
Whereas mild detergents and hypoosmotic conditions are sufficient
to lyse animal cells, this is not the case for other eukaryotes with cell
walls. Enzymes such as chitinases and glucanases in yeasts' and cel-
lulases in plants™ can be used to digest cell walls. However, for many
eukaryotes, the composition of their cell walls remains unknownand no
enzymes are available to generate protoplasts. Two solutions to work
with difficult-to-lyse cells are to isolate nuclei or to use plate-based
methods*>*, in which sorted cells can be physically lysed using high
temperature, freeze-thaw cycles or sonication. In addition, many
single-cell methods require relatively large numbers of cells and have
low cell recovery rates, which complicates the sampling of small speci-
mens. A potential solution is to mix genetically different specimens
and deconvolve single-cell data by genotype”.

Whereas auniversal protocol for single-cell experiments across all spe-
ciesisunrealistic, akey goal of the BCAinitiative is to define amethods
decisiontree to guide the main steps when sampling anew species. This
will include recommendations on the advantages and disadvantages
of each approach, specific experimental protocols for each strategy
and suggested quality controls to evaluate outcomes (Supplemen-
tary Table 1). Applying a unified sampling framework to an increasing
number of species will also help identify further constraints and guide
technology-development efforts to overcome these challenges.

BCA computational challenges
The BCA initiative aims to standardize and streamline all aspects of
single-cell data analysis, including unified pipelines, data formats



and data quality descriptors, to enable construction of comparable
whole-organism atlases (Supplementary Table 1). A common chal-
lenge in single-cell data analysis and interpretation is the inaccuracy
of gene annotations, such as missing or partial genes"®"’, To address
this issue, we will modify and extend existing gene annotations and
complement short-read scRNA-seq data with long-read sequencing,
working together with biodiversity genomics projects to improve exist-
ing genome annotations when needed. Beyond gene annotation, accu-
rate gene orthology inference™?*' will be another important aspect to
enable cross-species cell atlas comparisons.

Another key problem s the use of standardized data quality and cov-
erage metrics for single-cell atlases. The BCA will work to establish and
promote the use of metrics for atlas coverage and precision, analogous
tothose used ingenome assembly and annotation. For instance, we will
develop metrics to assess the saturation of atlases, helping to determine
the target numbers of cells needed to ensure robust coverage of an
organism’s diversity of cell types and states. We will also promote the
development of algorithms forimputing missing cell types basedona
species’genomic sequence and complete atlases from related species.

The data representations developed by the BCA, as well as stand-
ards and software implementing them, will enable access to and flex-
ible manipulation of single-cell atlases across species. To thisend, the
BCA database will connect existing nomenclatures, such as species
and gene names, with new higher-level objects such as cell types and
states, co-expressed gene modules or co-accessible regulatory ele-
ments. We expect that coherent data generation and processing will
strategically foster the development of new ideas and methods for
comparative cell atlas analyses, including tools to compare cell type
transcriptomes®'?*'2, cross-species cellembeddings'?, gene expres-
sion evolution models'*'¥ and new phylogenetic methods®. Even more
ambitiously, models for gene regulatory networks, developmental tra-
jectories or modular cellular programs, initially defined for individual
species, could be generalized inacomparative context and inform new
evolutionary models. Standardized ontologies, quality and coverage
metrics are essential to make substantial progress towards these goals.

Overall, adopting shared data processing and metadata standards
will significantly enhance the reusability and meta-analysis of cell
atlases, whether the aimis to infer the biology of a species of interest,
characterize components and interactions within an ecosystem, or
tackle the challenge of building a large language model that predicts
function from DNA.

Towards a cell type tree of life

The BCAinitiative represents the coalescence of biodiversity genomics
and single-cell biology, with the ambition to generate cellular atlases
atalarge phylogenetic scale. We predict initial steps to be focused on
optimizing experimental strategies, while simultaneously building
the computational infrastructure to efficiently analyse and interpret
variationin cell atlases within a phylogenetically informed framework.
Theseinitial experiences and design considerations, collectively shared
and discussed within the BCA community, will pave the way for the
efficient expansion of cell atlases to hundreds of species. Similarly,
whereas we initially plan to focus on single-cell gene expression profil-
ing, the methodological expertise developed inthis process will lay the
groundwork forincorporating extra data modalities, such as single-cell
resolved chromatin accessibility and spatial omics.

The BCA comparative perspective, rooted in phylogenetic methods
andevolutionary concepts, will help us to systematically describe and
interpret cell types, cell states and gene modules across organisms
and timescales. This conceptual and practical foundation will have
far-reaching effects beyond the creation of molecular catalogues of
eukaryotic cell types. The BCA outcomes will provide transforma-
tive insights into genome function and evolution, gene regulation,
organismal complexity, multicellular ontogeny, eukaryoticlife cycles,

symbiosis and other biological interactions bothin natural and altered
environmental conditions. The BCA will venture into unknown biology
withtools that have never before been applied systematically to explore
itatthisscale, holding the potential for unexpected discoveriesinone
of the major frontiers of modern biology.
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